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Singer Orthogonality and James Orthogonality
in the So-Called Quasi-Inner Product Space

PavLE M. MILICIC

ABSTRACT. In this note we prove that, in a quasi-inner product space,
S-orthogonality and J-orthogonality can be defined with the best ap-
proximations.

1. INTRODUCTION

Let X be a real smooth normed space of dimension greater than 1. It is
well known that the functional:

2 + tyl| — [l«]

" , (x,y € X)

1) o(e.y) = |l lim
always exists (see [3]).

This functional has the following properties:
The functional g is linear in the second argument and we have:

glar,y) = ag(z,y), (o€ R);
g(@,2) == gz, y)| < [lz]| [yl

(2)

Definition 1 ([6]). A normed space X is a quasi-inner product space (q.i.p.
space) if the equality

(3) lz +yllI* = llz —ylI* = 8[llz[IPg(z, ) + lyllPg(y )]
holds for all z,y € X.

The space of sequences [* is a ¢.i.p. space, but I is not a ¢.i.p. space.

It is proved in [6] and [7] that a g.i.p. space X is very smooth, uniformly
smooth, strictly convex and, in the case of Banach space, reflexive.

The orthogonality of the vector x # 0 to vector y # 0 in a normed space
X may be defined in several ways. We mention some kinds of orthogonality
and their denotations:
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zlpy < (YA€eR) |z| <|lzr+ Ay|| (Birkhoff orthogonality,
brief by B-orthogonality),

rlyy & |z—yl=z+y (James orthogonality),

zlgy & ‘

AN | AT ; .
Tzl — Tl H = ’ Tl T Tl H (Singer orthogonality).

In the papers [5], [6] and [7], by the use of functional g, the following
orthogonal relations are introduced:

rlegy & g(z,y) =0,

g
zly < glz,y)+9(y.z)=0,
vly o JelPg(@,y) +lyIPg(y,) = 0.
If there exists an inner product (-,-) in X2, then it is easy to see that
zpy & (z,y)=0
hold for every
g
pe{lp Ly Lg, Ly, L, L}
g
For more detail on B-orthogonality and g-orthogonality see papers [1],
(21, [4], [5], [7], [8] and [9].
B-orthogonality has priority in accordance with above quoted orthogo-

nalities. Namely, in the case of B-orthogonality, the orthogonality of the
vector x to the vector y can be defined as

Pz =0,
i.e., with the best approximation of vector x with vectors from

[y] = span{y}.

2. MAIN RESULT

In the proof of our theorem we shall use the following known assertions:
1) (T.2, [6]). In a smooth space X we have zl,y < xlpy, ie,
the relation 1, is equivalent with the relation Lp.
2) ([9]). If X is a ¢.i.p. space then zly < xl;y and miy =
sty. !

The following assertion has important value.

Theorem 1. Let X be a q.i.p. space and z,y € X\{0}. Then the following
equivalence relations hold:

a) zlgy < xlpz,
where is z = g(y,z/||z|?)x + y € span{z, y}.
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b) zlyy < xlpgh,
where is h = |lz|*y + g(Ily||*y, z/|lz|*)= € span{z, y}.

Proof. a) Using 2) we obtain
9(x,y) + gy, z) =

where
2= g(y,z/ ||z +y.
Hence we have
g
zly & glx,y)+9(y,z)=0 < g(z,z)=0.
On the other hand by 1) and 2) we have
rlyz & wlpz, so xzlgy << wxlpz.
b) Using 2) we have
(P9 (z. y) + IylPg(y. @) = llz*g(z, y) + |l *g(lyl*y, =/ |l]*)
= gl l|lz[*y) + g(llyl*y. «/l|=]?) ||
= g(x,h),
where
h=g(lylPy, =/ [z + ||z y.
Hence
xly < g(x,h)=0.
g
By 1) and 2) we get
zlyy <& xlph. O
Problem. Let X be a smooth and uniformly convex normed space in which

the equivalence relations a) and b) hold. Check whether the space X is a
q.1.p. space.
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